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Abstract Conjugated polymers based on pyromellitic diimides, the most compact

aromatic tetracarboxylic diimides have been synthesized. Relatively low-lying

LUMO energy levels and strong intermolecular interactions, together with solution

processibility might enable them to become a promising new class of polymers for

n-channel semiconducting materials.
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Introduction

High mobility and air stable n-type organic semiconducting materials still pose big

challenges in the field of organic electronics [1–3]. Recently, a lot of attentions have

been focused on acene tetracarboxylic diimides [4]. So far, they have been

considered as the most promising n-channel organic semiconducting materials for

organic field-effect transistors (OFETs) applications [4–6]. Many naphthalene

tetracarboxylic diimide (NDI) and perylene tetracarboxylic diimide (PDI) deriva-

tives have been synthesized and have achieved high electron affinities, high electron

mobilities, and, in some cases, air stabilities [7–19]. Conjugated polymers based on

NDIs and PDIs as repeating units have also been studied extensively and have

demonstrated as solution-processable electron transport materials [4, 6, 20].
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Diimides of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic diimides, BDIs) are

the most compact aromatic tetracarboxylic diimides among acene tetracarboxylic

diimides. It has shown promising properties as transparent n-channel organic thin-

film transistors (OTFTs) with relative high mobility and good on/off ratios in OFET

devices [21, 22]. BDI are well-known building blocks for polyimide dielectrics in

polymer science and microelectronics. However, BDI-functionalized conjugated

polymer has never been reported to the best of our knowledge. BDI-functionalized

conjugated polymer might have some interesting electronic properties. It is well

known that slight change on the core structures or substitutions of acene

tetracarboxylic diimides can bring profound influence on the mobility and stability

of devices. Significantly increasing devices environmental stability from PDI to

NDI-functionalized polymers has been reported [4]. It is curious to know the effect

of further reducing aromatic core size of acene tetracarboxylic diimides monomer

on the HOMO/LUMO energy levels of resulted polymers and stability of devices

based on those polymers. The extended conjugation in polymers might also

overcome the relatively small aromatic core size of BDI monomer and result in

better orbital overlap, therefore higher mobility. Here, we report the first synthesis

of BDI-functionalized conjugated polymers and characterization of their electro-

chemical and photophysical properties. Preliminary electrochemical studies sug-

gested that BDI-functionalized conjugated polymers are promising n-type organic

materials.

Experimental

Synthesis and characterization

The detailed synthesis procedures, instrumentation, materials, NMR characteriza-

tion of monomers and polymers, and DSC thermograms for the copolymers can be

found in the supplementary material. The synthesis of monomer and the polymers

was shown in Scheme 1. 3,6-Dibromopyro-mellitic dianhydride [23], 2,5-bis-

trimethylstannyl-thiophene (1) [24], and 2,5-bis-trimethyl-stannyl-2,20-bithiophene

(2) [24] were synthesized according to the literature methods. The 2-octyldodecyl-

amine was chosen to react with the dianhydride to ensure the solubility of the

diimide monomer and BDI-functionalized conjugated polymers. The reaction was

carried out through two-step procedure in one-pot to give N,N0-di-2-octyldodecyl-

3,6-dibromopyromellitic diimide [25] in 60% yields. The polymer PT-BDI and

P2T-BDI were synthesized by Stille polycondensation reactions with 1:1 monomer

ratio of dibromide to distannane in the presence of tris(dibenzylideneacetone)

dipalladium (Pd2dba3) as catalyst and triphenylarsine as ligand in toluene. Polymer

PT-BDI was purified by precipitating in methanol and washing with methanol in a

Soxhlet extractor for 24 h. And copolymer P2T-BDI was purified by precipitating

in methanol and washing with methanol and hexane successively in a Soxhlet

extractor for 24 h each. After removing solvent, PT-BDI and P2T-BDI were

obtained as orange and red solid with yield of 96 and 72%. The polymers showed

good solubility in common solvents, such as dichloromethane, chloroform,
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chlorobenzene, and dichlorobenzene. The molecular weights of two polymers were

measured by gel permeation chromatography (GPC) with polystyrenes as standards

and tetrahydrofuran as eluent. The number-average molecular weights (Mn) were

26.2 and 20.4 kDa, and the polydispersity indexes were 1.68 and 2.29 for PT-BDI
and P2T-BDI, respectively.

Results and discussion

Thermal analysis

The thermal stabilities of copolymers were investigated by thermogravimetric

analysis (TGA). The point of 5% weight loss was selected as the onset

decomposition point. The thermal decomposition temperatures (Td) were 353 and

402 �C for PT-BDI and P2T-BDI, respectively. Two copolymers have adequate

thermal stability for applications in OFETs and other optoelectronic devices. The

DSC analysis was carried out to investigate the thermal transitions of the two

polymers (Figure S1 and S2 in supplementary material). There were distinct

exothermic peaks (at 98.5 �C for PT-BDI and at 178.3 �C for P2T-BDI) on the

Scheme 1 Synthesis of BDI-based conjugated polymers

Polym. Bull. (2012) 69:63–69 65

123



cooling curves of the two copolymers; there were corresponding endothermic peaks

(at 144.5 �C for PT-BDI and at 199.8 �C for P2T-BDI) on the heating curves of the

two copolymers. The presence of prominent crystallization peaks indicated that new

polymers had a strong tendency to crystallize in the solid state. Neither polymer

displayed glass transition within the range of the study (20–300 �C).

Optical properties

The UV–vis absorption spectra of the polymers in chloroform solution and as thin

films were shown in Fig. 1. The optical absorption properties of the copolymers

were listed in Table 1. The absorption maxima of PT-BDI and P2T-BDI in solution

were at 366 and 420 nm. The absorption maxima of PT-BDI and P2T-BDI solid

films were at 401 and 479 nm. The thin-film absorption spectra of were broadened.

Absorption spectra of polymers were red-shifted significantly from solution to thin

film. The absorption maxima of PT-BDI and P2T-BDI were red-shift 35 and 59 nm

from solution to film (Fig. 1). The significant red-shift indicated that strong

intermolecular interactions and aggregation existed in the spin-coated thin solid

films.

Fig. 1 Normalized UV–vis spectra of PT-BDI and P2T-BDI in chloroform solution (left) and as thin
films (right)

Table 1 Optical and redox properties of PT-BDI and P2T-BDI

Polymers Solutiona k (nm) Film k (nm)

kabs
max kabs

max kabs
onset

Eopt
g (eV)b

Ered
onset(V) LUMO (eV)c HOMO (eV)d

PT-BDI 366 401 546 2.27 -1.00 -3.70 -5.97

P2T-BDI 420 479 622 1.99 -0.90 -3.80 -5.79

a In chloroform solution

b Calculated from UV absorption spectrum of polymer films by the equation: Bandgap ¼ 1240=kabs
onset

c LUMO ¼ � 4:70 þ Ered
onset

� �

d HOMO ¼ � �LUMO þ Eopt
g

� �
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Strong intermolecular p–p orbital interactions and ordered arrangements of

polymers chains may exist in PT-BDI and P2T-BDI based on the information of

crystallization transition on DSC and red-shift of film absorption spectra [26, 27].

These interactions and ordering may promote charge transport in OFET devices [28,

29]. The edges of the film absorption bands for PT-BDI and P2T-BDI were at 546

and 622 nm, respectively. The optical bandgaps ðEopt
g Þ were 2.27 eV for PT-BDI,

1.99 eV for P2T-BDI estimated from the absorption edges of solid-state films.

Electrochemical properties

The redox behaviors of the polymers (Fig. 2) were studied by cyclic voltammetry.

The LUMO energy levels were calculated from the onset reduction potentials. They

are -3.70 and -3.80 eV for PT-BDI and P2T-BDI, respectively. The relatively

low-lying LUMO energy levels of the copolymers reflected the high intrinsic

electron affinity of pyromellitic diimides. The LUMO levels of acene tetracarb-

oxylic diimides-containing polymers were mainly determined by the acceptor units

[30, 31]. Although the LUMO energy levels of new polymers were slightly higher

than these of PDI and NDI alternating thiophene polymers (*-3.9 eV) [4]. The

LUMO energy levels of the new copolymers are still much below -3.0 eV for

facilitating electron injection from electrodes.

Conclusion

In summary, the first synthesis of BDI-based conjugated polymers have been

reported. The LUMO energy levels of polymers are very close to NDI-based

counterparts. Strong intermolecular interactions and aggregation exist in these BDI

Fig. 2 Cyclic voltammograms of BDI-based copolymers thin films
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polymer thin films. Relatively low-lying LUMO energy levels and strong intermo-

lecular interactions, together with solution processibility will enable them to become

a promising new class of polymers for n-channel semiconducting materials.
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